TỔNG HỢP CÔNG DỤNG CỦA VECTO QUAY FRESNEL

Vật lý 12, dao động điều hòa. Tổng hợp những công dụng của vecto quay Fresnel

Những Điều Thú Vị Chỉ 5% Người Biết

Advertisement

 Mục lục

Advertisement

Video tổng hợp tất cả các công dụng của vectơ quay Fresnel kèm bài tập áp dụng chi tiết

1. Phần 1


chú ý video sẽ phát sau khi hoàn tất xem quảng cáo

Trong phần này chúng ta sẽ cùng nhắc lại những công dụng sau của vecto quay Fresnel:

Công dụng 1. Xác định phase ban đầu.

"Phase ban đầu và chiều chuyển động luôn TRÁI DẤU".

  • vật đi theo chiều âm, pha ban đầu luôn dương.
  • vật đi theo chiều dương, pha ban đầu luôn âm.

Một số trường hợp đặc biệt:

hinh-anh-phan-1-20-0

Công dụng 2: Xác định thời gian dao động

+ Trong một chu kỳ T, vector sẽ quay được một góc là 360° hay 2π.

+ Vật tương ứng với góc quay bất kì φ, thời gian chuyển động của lò xo được tính dựa theo chu kì: t=φ360=φ2π.

Công dụng 3: Xác định thời gian thỏa một điều kiện N lần

Bước 1: Xác định vector thỏa điều kiện và vẽ lên vòng tròn lượng giác.

Bước 2: Xác định vị trí ban đầu của vector quay.

Bước 3: Xác định số lần thỏa điều kiện trong một chu kì.

Bước 4: Phân tích số lần thỏa điều kiện theo số nguyên, số bán nguyên chu kỳ, lưu ý chu kỳ cuối cùng.

Bước 5: Xác định khoảng thời gian của chu kì cuối cùng.

 

hinh-anh-phan-1-20-1

Công dụng 4: Xác định số lần thỏa điều kiện trong thời gian cho trước

Tương tự với công dụng số 3 (bạn có thể tham khảo Vlog Thời gian dao động cần thiết để thỏa một điều kiện cho trước).

Công dụng 5: Xác định thời gian vượt quá hoặc không vượt quá

Bước 1: Xác định giá trị đề bài đề cập lên vòng tròn lượng giác

Bước 2: Từ đó xác định xác vector ranh giới

Bước 3: Biện luận theo yêu cầu đề bài

hinh-anh-phan-1-20-2

 

Bước 4: Từ góc quay vừa biện luận, ta có thể suy ra giá trị của thời gian theo quy tắc tam suất.

2. Phần 2


chú ý video sẽ phát sau khi hoàn tất xem quảng cáo

Công dụng 6: Xác định quãng đường của dao động điều hòa

Bước 1: xác định chu kỳ dao động

Bước 2: lập tỉ số tT

Bước 3: phân tích tỉ số vừa lập theo số nguyên và bán nguyên theo T

Bước 4: tìm quãng đường vật di chuyển.

+ Trong một chu kì vật sẽ đi được quãng đường 4A.

+ Trong nửa chu kì vật sẽ đi được quãng đường 2A.

+ Với tất cả những khoảng thời gian khác có Δt<T2 thì ta phải sử dụng phương pháp vector quay để giải quyết bài toán. Cụ thể như sau:

Nếu vật có qua hai vị trí biên: S=x1-A+x1-A

hinh-anh-phan-2-21-0

Nếu vật không qua hai biên: S=x2-x1

hinh-anh-phan-2-21-1

Công dụng 7: Quãng đường lớn nhất hoặc nhỏ nhất của dao động điều hòa

Đối với một vật dao động điều hòa, cùng một khoảng thời gian bất kì, ở những vị trí khác nhau thì vận tốc của vật khác nhau, dẫn đến quãng đường vật đi được cũng sẽ khác nhau. 

a. Quãng đường lớn nhất

Vật có vận tốc lớn nhất khi đi qua VTCB, vì vậy góc quay của vật có tia phân giác là trục sin.

hinh-anh-phan-2-21-2

b. Quãng đường nhỏ nhất

Vật có vận tốc lớn nhất khi đi qua VTB, vì vậy góc quay của vật có tia phân giác là trục cos.

hinh-anh-phan-2-21-3

Công dụng 8: Tốc độ trung bình và vận tốc trung bình của dao động điều hòahinh-anh-phan-2-21-4

 

Công dụng 9: Tốc độ trung bình lớn nhất và nhỏ nhất của dao động điều hòa

Công thức tổng quát của tốc độ trung bình là v¯=st, vậy tùy thuộc vào quãng đường vật đi được thì ta có tốc độ trung bình tương ứng

+ Tốc độ trung bình lớn nhất: v¯max=smaxt

+ Tốc độ trung bình nhỏ nhất: v¯min=smint

Vì vậy bài toàn tốc độ trung bình lớn nhất và tốc độ trung bình nhỏ nhất là bài toán liên quan đến công dụng 7 (quãng đường lớn nhất và quãng đường nhỏ nhất)

Công dụng 10: Mối quan hệ x - v - a của dao động điều hòa

So sánh giản đồ vector quay Fresnel với một dao động thực tế. 

hinh-anh-phan-2-21-5

hinh-anh-phan-2-21-6


Thông Tin Tác Giả
Ekip congthucvatly.com

Các bài giảng liên quan TỔNG HỢP CÔNG DỤNG CỦA VECTO QUAY FRESNEL

TỔNG QUAN VỀ DAO ĐỘNG ĐIỀU HÒA

129206   20/06/2021

Bài giảng tổng quan về dao động điều hòa. Biểu diễn vecto quay Fresel. Hệ thức độc lập theo thời gian. Phương trình li độ, vận tốc, gia tốc trong dao động. Video hướng dẫn chi tiết.

VIẾT PHƯƠNG TRÌNH DAO ĐỘNG ĐIỀU HÒA

629070   27/06/2021

Bạn không biết viết phương trình dao động điều hòa như thế nào? Hướng dẫn cách viết phương trình dao động điều hòa và cá công thức liên quan. Video hướng dẫn chi tiết.

QUÃNG ĐƯỜNG ĐI ĐƯỢC CỦA MỘT VẬT DAO ĐỘNG ĐIỀU HÒA TRONG THỜI GIAN XÁC ĐỊNH

829098   29/06/2021

Video hướng dẫn chi tiết về bài toán xác định quãng đường mà một vật dao động điều hòa thực hiện được khi biết thời gian chuyển động của vật.

QUÃNG ĐƯỜNG LỚN NHẤT VÀ QUÃNG ĐƯỜNG NHỎ NHẤT VẬT ĐI ĐƯỢC TRONG THỜI GIAN XÁC ĐỊNH

1029031   30/06/2021

Nơi bạn sẽ được học về cách tìm quãng đường lớn nhất hoặc nhỏ nhất của một vật dao động điều hòa.

Advertisement

TỐC ĐỘ TRUNG BÌNH VÀ VẬN TỐC TRUNG BÌNH TRONG DAO ĐỘNG ĐIỀU HÒA

1229036   02/07/2021

Video bài giảng hướng dẫn chi tiết cho các bạn hiểu về tốc độ trung bình, vận tốc trung bình trong dao động điều hòa. Kèm theo bài tập ví dụ.

THỜI GIAN DAO ĐỘNG ĐỂ THỎA MỘT ĐIỀU KIỆN CHO TRƯỚC

1429047   05/07/2021

Video hướng dẫn cách giải bài toán tìm thời gian để thỏa một điều kiện cho trước. Có bài tập ví dụ kèm công thức.

THỜI GIAN VƯỢT QUÁ - THỜI GIAN KHÔNG VƯỢT QUÁ

1729007   22/07/2021

Video hướng dẫn chi tiết cho các bạn cách tìm thời gian vượt quá, thời gian không vượt quá của một dao động điều hòa.

Advertisement

Advertisement

Các công thức liên quan


W=Wt+Wđ=mω2A22

Định nghĩa : Cơ năng của dao động điều hòa bằng tổng động năng và thế năng.Cơ năng là đại lượng bảo toàn khi bỏ qua ma sát.

Công thức :

 W=Wt+Wđ=mω2A22


Xem thêm

Wt=W-Wđ=mω2A2cos2ωt+φ

Định nghĩa : Thế năng là dạng năng lượng phụ thuộc vào vị trí .Thế năng biến thiên điều hòa cùng chu kì, tần số với động năng.Thế năng và động năng có thể chuyển hóa cho nhau nhưng cơ năng là một đại lượng bảo toàn.

Công thức: 

Wt=W-Wđ=mω2A2cos2ωt+φ=mω2x22

Chú ý : Wt max =mω2A22 tại biên và có giá trị bằng cơ năng


Xem thêm

Wđ=12mv2=12mω2A2-x2=mω2A22sin2ωt+φ

Định nghĩa:

Động năng của dao động điều hòa là dạng năng lượng dưới dạng chuyển động .Biến thiên với chu kì và tần số T2,2f.Trong quá trình chuyển động động năng và thế năng chuyển đổi cho nhau.

Công thức:

Wđ=12mv2=12mω2A2-x2=mω2A22sin2ωt+φ

Với Wđ : Động năng của dao động điều hòa J

       m : Khối lượng của vật kg

       ω: tần số góc của dao động điều hòa rad/s

       A: Biên độ của dao động điều hòa

Chú ý động năng cực đại : Wđ max =mω2A2 tại VTCB và bằng cơ năng

Mối tương quan giữa chu kì dao động của con lắc và chu kì biến đổi của động năng:

- Trong dao động điều hòa. Chu kì của dao động tự do gấp hai lần chu kì biến đổi của động năng.

- Trong dao động điều hòa. Tần số của dao động tự do bằng một nửa tần số biến đổi của động năng.


Xem thêm

F=ma=-mω2x

Định nghĩa : Lực phục hồi trong dao động điều hòa là tổng hợp các lực làm cho vật dao động điều hòa.Lực phục hồi cũng biến thiên điều hòa cùng tần số với gia tốc .

Công thức : F=ma=-mω2x=-m2πT2x

Chú ý lực phục hồi cùng chiều với gia tốc có độ lớn cực đại tại hai biên bằng 0 tại VTCB


Xem thêm

v2=ω2A2-x2

Từ công thức độc lập thời gian : x2+v2ω2=A2  v2ω2=A2-x2v2=ω2A2-x2

 

Chú thích:

x: Li độ của chất điểm (cm, m)

A: Biên độ dao động (cm, m)

ω: Tần số góc ( Tốc độ góc) (rad/s)

v: Vận tốc của chất điểm tại vị trí có li độ x (cm/s, m/s)

 

 


Xem thêm

amax=ω2A

Chú thích:

a: Gia tốc cực đại của chất điểm trong dao động điều hòa (cm/s2, m/s2)

ω: Tần số góc (tốc độ góc) (rad/s)

A: li độ cực đại của chất điểm (biên độ dao động) (cm, m)

 

Lưu ý:

Gia tốc đạt giá trị cực đại khi vật ở biên âm.amax=ω2A

Gia tốc đạt giá trị cực tiểu khi vật ở biên dương.amin=-ω2A

Gia tốc đạt độ lớn lớn nhất tại vị trí hai biên.amax=ω2A

Gia tốc đạt độ lớn nhỏ nhất tại vị trí cân bằng.amin=0

 


Xem thêm

x2A2+v2vmax2=1 ; v2vmax2+a2amax2=1

Chú thích:

A: Biên độ dao động (cm, m).

v: Vận tốc của chất điểm tại vị trí có li độ x (cm/s, m/s).

a: Gia tốc của chất điểm tại vị trí có li độ x (cm/s2, m/s2).

vmax: Vận tốc cực đại của chất điểm (cm/s, m/s).

amax: Gia tốc cực đại của chất điểm (cm/s2, m/s2).

x: Li độ của chất điểm trong dao động điều hòa (cm).


Xem thêm

k=mω2

Chú thích:

k: Độ cứng của lò xo (hệ số đàn hồi của lò xo) (N/m)

m: Khối lượng của vật nặng gắn vào con lắc lò xo (kg)

ω: Tần số góc (Tốc độ góc) (rad/s)

 

Giải thích công thức:

Ta có công thức tính tần số góc của con lắc lò xo: ω=km  ω2=km  k=mω2.


Xem thêm

A=lmax-lmin2

Chú thích:

A: Biên độ dao động (cm, m)

lmax: Chiều dài con lắc lò xo lúc dài nhất (cm, m)

lmin: Chiều dài con lắc lò xo lúc ngắn nhất (cm, m)


Xem thêm

ω=2πf=2πT=2πNt=amaxvmax=vmaxA=amaxA=vA2-x2=v12-v22x12-x22

Chú thích:

ω: Tốc độ góc (Tần số góc) (rad/s).

f: Tần số dao động (Hz).

T: Chu kỳ dao động (s).

A: Biên độ dao động (cm, m).

v: Vận tốc của chất điểm tại vị trí có li độ x (cm/s, m/s).

a: Gia tốc của chất điểm tại vị trí có li độ x (cm/s2, m/s2).

vmax: Vận tốc cực đại của chất điểm (cm/s, m/s).

amax: Gia tốc cực đại của chất điểm (cm/s2, m/s2).

x: Li độ của chất điểm trong dao động điều hòa (cm).

 

Chứng minh các công thức:

+ Từ công thức tính tần sô : f=ω2π  ω=2πf.

+ Từ công thức tính chu kỳ: T=2πω  ω=2πT.

+ Từ công thức vận tốc cực đại và gia tốc cực đại của chất điểm :  vmax=ωAamax=ω2A amaxvmax=ω2AωA=ω  ω=amaxvmaxω=vmaxAω=amaxA

+ Từ công thức độc lập thời gian: x2+v2ω2=A2  v2ω2=A2-x2  ω2=v2A2-x2  ω=vA2-x2

+ Công thức độc lập thời gian tại từng thời điểm t1;t2 là:

x12+v12ω2=A2x22+v22ω2=A2x12+v12ω2=x22+v22ω2x12-x22=v22-v12ω2ω=v12-v22x12-x22


Xem thêm

A=L2=S4N=vmaxω=amaxω2=v2maxamax=x2+v2ω2=ω2v2+a2ω2

Chú thích:

x: Li độ của chất điểm (cm, m)

L: Độ dài quỹ đạo (cm, m)

S: Quãng đường vật đi được trong N vòng (cm, m)

A: Biên độ dao động (cm, m)

ω: Tần số góc ( Tốc độ góc) (rad/s)

N: số dao động toàn phần mà chất điểm thực hiện được

v: Vận tốc của chất điểm tại vị trí có li độ x (cm/s, m/s)

a: Gia tốc của chất điểm tại vị trí có li độ x (cm/s2, m/s2)

vmax: Vận tốc cực đại của chất điểm (cm/s, m/s)

amax: Gia tốc cực đại của chất điểm (cm/s2, m/s2)

 

Chứng minh các công thức:

+ Vật chuyển động trên quỹ đạo dài L=2A  A=L2.

+ Vật chuyển động cứ một vòng sẽ đi được quãng đường là 4A, vật vật đi N vòng thì quãng đường sẽ là S=4AN  A=S4N.

+ Từ công thức tốc độ cực đại của vật: vmax=ωA  A=vmaxω.

+ Từ công thức gia tốc cực đại của vật: amax=ω2A  A=amaxω2.

+ Ta có: vmax=ωA và amax=ω2A v2maxamax=ω2A2ω2A=A.

+ Từ hệ thức độc lập thời gian :x2+v2ω2=A2  A=x2+v2ω2.

+ Từ hệ thức độc lập thời gian :v2ω2+a2ω4=A2  v2ω2+a2ω4=A2 A=v2ω2+a2ω2.


Xem thêm

x2+v2ω2=A2; v2ω2+a2ω4=A2

Li độ x và vận tốc v vuông pha nhau :

x2A2+v2v2max=1x2A2+v2ω2A2=1x2+v2ω2=A2 

Vận tốc v và gia tốc a vuông pha nhau:

v2v2max+a2a2max=1v2ω2A2+a2ω4A2=1v2ω2+a2ω4=A2 

 

Chú thích:

x: Li độ của chất điểm (cm, m)

A: Biên độ dao động (cm, m)

ω: Tần số góc ( Tốc độ góc) (rad/s)

v: Vận tốc của chất điểm tại vị trí có li độ x (cm/s, m/s)

a: Gia tốc của chất điểm tại vị trí có li độ x (cm/s2, m/s2)

vmax: Vận tốc cực đại của chất điểm (cm/s, m/s)

amax: Gia tốc cực đại của chất điểm (cm/s2, m/s2)

 

Lưu ý: Hai công thức trên còn được gọi là hệ thức độc lập thời gian.


Xem thêm

vtb=xt=x2-x1t

Khái niệm:

Vận tốc trung bình trong khoảng thời gian nhất định được định nghĩa là tỉ số giữa sự thay đổi vị trí trong khoảng thời gian đang xét và khoảng thời gian đó.

 

Chú thích:

vtb: Vận tốc trung bình của chất điểm (cm/s, m/s)

x: Độ dời của chất điểm (cm, m)

x1: Vị trí của vật tại thời điểm bắt đầu xét chuyển động (cm, m)

x2: Vị trí của vật sau khi chuyển động trong thời gian t (cm, m)

t: Thời gian chuyển động của vật (s)


Xem thêm

v¯tb=St

Khái niệm: 

Tốc độ của một vật là độ lớn của sự thay đổi vị trí của nó.

 

Chú thích:

v¯tb: tốc độ trung bình của chất điểm (cm/s, m/s)

S: Quãng đường mà chất điểm đi được trong thời gian t (cm, m)

t: Thời gian vật chuyển động (s)

 

Lưu ý: 

+ Tốc độ trung bình của chất điểm chuyển động trong một chu kỳ :

Vtb=St=4AT=4A2πω=2πAω=2πvmax.

+ Tốc độ trung bình của chất điểm chuyển động trong nửa chu kỳ:

Vtb=St=2AT2=4AT=2πvmax

 


Xem thêm

a=-ω2.x

Công thức:

Từ phương trình a=v'=-ωAsinωt+φ=-ω2Acosωt+φ=-ω2x.

 

Chú thích:

a: Gia tốc của chất điểm trong dao động điều hòa tại vị trí có li độ x (cm/s2, m/s2)

ω: Tần số góc (tốc độ góc) (rad/s)

x: li độ của chất điểm (cm, m)

 

 


Xem thêm

vmax=ω.A

Chú thích: 

vmax: Tốc độ cực đại của chất điểm (cm/s, m/s)

ω: Tần số góc ( tốc độ góc) (rad/s)

A: Biên độ dao động (cm, m)

 

Lưu ý:

Vận tốc đạt giá trị cực đại khi vật qua vị trí cân bằng theo chiều dương. (vmax=ωA)

Vận tốc đạt giá trị cực tiểu khi vật qua vị trí cân bằng theo chiều âm.(vmin=-ωA)

Tốc độ lớn nhất ( xét độ lớn) khi vật ở vị trí cân bằng.vmax=ωA

Tốc độ nhỏ nhất (xét độ lớn) khi vật ở hai biên.vmin=0


Xem thêm

f=1T=ω2π=Nt

Khái niệm:

Tần số của dao động điều hòa là số dao động chất điểm thực hiện được trong một giây.

 

Chú thích:

f: Tần số dao động (1/s) (Hz).

ω: Tần số góc (tốc độ góc) (rad/s).

T: Chu kỳ dao động của vật (s).

N: Số dao động mà chất điểm thực hiện được trong khoảng thời gian t.

t: Thời gian thực hiện hết số dao động (s).


Xem thêm

T=2πω=tN

Khái niệm:

Chu kỳ của dao động điều hòa là khoảng thời gian để vật thực hiện một dao động toàn phần. 

 

Chú thích:

T: Chu kỳ dao động (s).

ω: Tần số góc (tốc độ góc) (rad/s).

N: Số dao động mà chất điểm thực hiện được trong khoảng thời gian t.

t: Thời gian thực hiện hết số dao động (s).

Lưu ý:

Thời gian vật đi được tại các vị trí đặc biệt:

hinh-anh-chu-ki-dao-dong-dieu-hoa-vat-ly-12-257-0


Xem thêm

a=ω2Acos(ωt+φ+π)

Gia tốc là đạo hàm của vận tốc theo thời gian.

a=v'=-ωAsin(ωt+φ)'=-ω2Acos(ωt+φ)=ω2Acos(ωt+φ+π).

 

Chú thích:

a: Gia tốc của chất điểm tại thời điểm t (cm/s2, m/s2)

A: Biên độ dao động (li độ cực đại) của chất điểm (cm, m)

ω: Tần số góc (tốc độ góc) (rad/s)

(ωt+φ): Pha dao động tại thời điểm t (rad)

φ: Pha ban đầu của chất điểm tại thời điểm t=0

t:Thời gian (s)

 

Liên hệ pha:

Gia tốc sớm pha π2 so với vận tốc Vận tốc chậm (trễ) pha π2 so với gia tốc.

Gia tốc sớm pha π so với li độ ( a ngược pha x).

 

Đồ thị:

Đồ thị gia tốc theo thời gian là đường hình sin.

Đồ thị gia tốc theo li độ là một đường thẳng.

Đồ thị gia tốc theo vận tốc là một elip.


Xem thêm

v=ωAcosωt+φ+π2

Khái niệm:

Vận tốc là đạo hàm của li độ theo thời gian:

v=x'=Acos(ωt+φ)'=-ωAsin(ωt+φ)=ωAcosωt+φ+π2

Chú thích: 

v: Vận tốc của chất điểm tại thời điểm t (cm/s, m/s)

A: Biên độ dao động (li độ cực đại) của chất điểm (cm,m)

ω: Tần số góc ( tốc độ góc) (rad/s)

(ωt+φ): Pha dao động tại thời điểm t (rad)

φ: Pha ban đầu của chất điểm tại thời điểm t=0 (rad)

t: Thời gian (s)

 

Đồ thị:

Đồ thị vận tốc theo thời gian là đường hình sin.

Đồ thị vận tốc theo li độ là hình elip.

 

Liên hệ pha:

Vận tốc sớm pha π2 so với li độ x  Li độ x chậm (trễ) pha π2 so với vận tốc.

Gia tốc sớm pha π2 so với vận tốc  Vận tốc chậm (trễ) pha π2 so với gia tốc.

 


Xem thêm

x=Acos(ωt+φ)

 

Định nghĩa: Hình chiếu của một vật chuyển động tròn đều lên đường kính của nó là một dao động đều hòa.

 

hinh-anh-phuong-trinh-dao-dong-dieu-hoa-vat-ly-12-253-0

Chú thích:

x: Li độ của chất điểm tại thời điểm t.

t: Thời gian (s).

A: Biên độ dao động ( li độ cực đại) của chất điểm (cm, m).

ω: Tần số góc (tốc độ góc) (rad/s).

(ωt+φ): Pha dao động tại thời điểm t (rad).

φ: Pha ban đầu của dao động tại thời điểm t=0 (-πφπ)(rad).

 

Đồ thị:

Đồ thị của tọa độ theo thời gian là đường hình sin.


Xem thêm

ωt+φ=arccosxA

Chú thích:

ω : tần số góc của dao động điều hóa rad/s

φ: Pha ban đầu rad


Xem thêm

Wd=nWt

Wđ=nWtx=±An+1v=±vmaxnn+1

Chú thích:

Wđ: Động năng (J)

Wt: Thế năng (J)

n: Số dương bất kỳ

x: Li độ của chất điểm (cm, m)

A: Biên độ dao động (cm, m)

v: Vận tốc của chất điểm tại vị trí có li độ x (cm/s, m/s)

vmax: Vận tốc cực đại của chất điểm (cm/s, m/s)

hinh-anh-moi-lien-he-giua-dong-nang-va-the-nang-vat-ly-12-274-0

Một số vị trí đặc biệt và quan hệ năng lượng tại điểm đó

(lưu ý: có thể lấy đối xứng các vectơ qua trục Ox và Oy để suy ra những vị trí còn lại)

 

CHỨNG MINH CÔNG THỨC

Tọa độ x:

W=Wt+nWt 12kA2=(n+1).12kx2x=±An+1

Vận tốc v: 

W=Wd+1nWd12kA2=n+1n.mv22A2=n+1n.v2ω2v=±ωAnn+1=±vmaxnn+1

 

CÔNG THỨC TƯƠNG TỰ 

Khi Wt=nWd x=±Ann+1v=±vmaxn+1

 

 


Xem thêm

φ=±arctan-vωx=±arccosxA

φ=arctan-vωx- ωt0

Chú thích:

x: Li độ của chất điểm (cm, m)

A: Biên độ dao động (cm, m)

ω: Tần số góc ( Tốc độ góc) (rad/s)

v: Vận tốc của chất điểm tại vị trí có li độ (cm/s, m/s)

φ: Pha ban đầu của chất điểm (rad)

 

+ Căn cứ vào thời điểm t=0 thì : x=Acosφv=-Aωsinφ >;<;=0cosφ=xAφ >;<;=0φ=arccosxA

Do v.φ<0 nên dấu của φ tùy thuộc vào vvt chuyn đng theo chiu dương: v>0  φ<0.vt chuyn đng theo chiu âm : v<0  φ>0.

+ Hoặc chia 2 vế phương trình trên : vx=-ωtanφ  φ=arctan-vωx

 

Lưu ý:

Nếu đề cho tại t=t0 thì x=x0; v=v0 thì : x0=Acosωt0+φv0=-Aωsinωt0+φ v0x0=-ωtanωt0+φ  ωt0+φ=arctan-vωx φ=arctan-vωx- ωt0 


Xem thêm

Trong n chu kì:S=4.n.A    Trong n ca na chu kì :S=2.n.A

Trong 1 chu kì dao động, dù xuất phát ở vị trí nào vật luôn đi được quãng đường 4A.

hinh-anh-quang-duong-cua-dao-dong-dieu-hoa-trong-1-va-1-nua-chu-ki-vat-ly-12-385-0

 

Trong 12chu kì dao động, dù xuất phát ở vị trí nào vật luôn đi được quãng đường 2A.

hinh-anh-quang-duong-cua-dao-dong-dieu-hoa-trong-1-va-1-nua-chu-ki-vat-ly-12-385-1

 


Xem thêm

x2=x1cos2πtT+v1ωsin2πtT

v2=v1cos2πtT-ωx1sin2πtT

Tại thời điểm t1 vật có li độ x1 và vận tốc v1

    Đến thời điểm vật có li độ x2 và vận tốc v2

Ta có: x2=Acosφ1+ωt=x1cosωt+v1ωsinωt

Với φ=ωt, nên x2=x1cos2πtT+v1ωsin2πtT

Ta có:  v2=-ωAsinφ1+ωt=-v1cosωt-ωx1sinωt

    Vậy: v2=v1cos2πtT-ωx1sin2πtT

* Đặc biệt:

 + Sau khoảng thời gianT (hoặc nT) vật trở lại vị trí và chiều chuyển động như cũ:x1=x2;v1=v2;                              ; .

 + Sau khoảng thời gian 2n+1T2 [hoặc ] vật qua vị trí đối xứng: ; .x2=-x1;v2=-v1

 + Sau khoảng thời gian 2n+1T4 [hoặc ] vật qua vị trí đối xứng:

x2=±A2-x12

v2=±vmax2-v12

                                       


Xem thêm

tT=n+a

S=n.4.A+S3

hinh-anh-quang-duong-trong-khoang-thoi-gian-xac-dinh-vat-ly-12-336-0

  • Bước 1: Tìm t=t2-t1
  • Bước 2: Lập tỉ số: tT=n+a ; (nN ;0aT<T)
  • Bước 3: Tìm quãng đường. S=n.4.A+S3
  • Bước 4: Tìm S3:

   Để tìm được S3 ta tính như sau:

              - Tại t = t1: x =?

              - Tại t = t2; x =?

   Căn cứ vào vị trí và chiều chuyển động của vật tại t1 và t2 để tìm ra S3 (Dựa vào đường tròn)

  • Bước 5: thay S3 vào S để tìm ra được quãng đường.

* Chú ý: Các trường hợp đặc biệt: 

ST=4AST2=ASnT=n.4ASnT2=2.n.A


Xem thêm

t=αω

Lưu ý:

Thời gian đi từ 2 biên vào đến các vị trí đặc biệt:

+ Từ biên về vị trí  x=±A32 là T12.

+ Từ biên về vị trí  x=±A22T8.

+ Từ biên về vị trí  x=±A2 là T6.

+ Từ biên về vị trí cân bằng là T4.


Xem thêm

Smax=2Asinφ2=2Asinπ.tT

Nguyên tắc: Vật đi được quãng đường dài nhất khi li độ điểm đầu và điểm cuối có giá trị đối nhau.

hinh-anh-quang-duong-lon-nhat-trong-dao-dong-dieu-hoa-vat-ly-12-277-0

hinh-anh-quang-duong-lon-nhat-trong-dao-dong-dieu-hoa-vat-ly-12-277-1

 

Chú thích:

Smax: Quãng đường lớn nhất chất điểm chuyển động trong khoảng thời gian t(cm, m)

A: Biên độ dao động (cm, m)

φ: góc quét của chất điểm trong khoảng thời gian t (rad)

Với: φ=ω.t và t<T2

 

Lưu ý:

 + Nếu khoảng thời gian t'T2 thì tách:t'=n.T2+t    t<T2   S=n.2A+Smax. Với :Smax=2Asinφ2.

+ Công thức còn có thể viết : Smax=2Asinφ2=2Asinω.t2=2Asin2πT.t2=2Asinπ.tT 

Với: t<T2.


Xem thêm

Smin=2A1-cosφ2

Nguyên tắc: Vật đi được quãng đường ngắn nhất khi li độ điểm đầu và điểm cuối có giá trị bằng nhau.

hinh-anh-quang-duong-nho-nhat-trong-dao-dong-dieu-hoa-278-0

hinh-anh-quang-duong-nho-nhat-trong-dao-dong-dieu-hoa-278-1

 

Chú thích:

Smin: Quãng đường nhỏ nhất chất điểm chuyển động trong khoảng thời gian t(cm, m)

A: Biên độ dao động (cm, m)

φ: góc quét của chất điểm trong khoảng thời gian t (rad)

Với: φ=ω.t và t<T2

 

Lưu ý:

 + Nếu khoảng thời gian t'T2 thì tách:t'=n.T2+t    t<T2   S=n.2A+Smin. Với :Smin=2A1-cosφ2.

+ Công thức còn có thể viết : Smin=2A1-cosφ2=2A1-cosω.t2=2A1-cos2πT.t2=2A1-cosπ.tT 

Với: t<T2.

 


Xem thêm

vtb=xt

Khái niệm:

Vận tốc trung bình là thương số giữa độ dời của chất điểm và độ biến thiên thời gian.

 

Chú thích:

vtb: Vận tốc trung bình của chất điểm (cm/s, m/s)

x: Độ dời của chất điểm (cm, m) x=x2-x1

t: Thời gian để vật thực hiện độ dời x (s) t=t2-t1

 


Xem thêm

v¯=St

Khái niệm:

Tốc độ trung bình là thương số giữa quãng đường chất điểm đi được và thời gian để đi hết được quãng đường đó.

 

Chú thích:

v: Tốc độ trung bình của chất điểm (cm/s, m/s)

S: Quãng đường chất điểm đi được (cm, m)

t: Thời gian mà vật chuyển động được quãng đường S (s)

 

Lưu ý:

+ Tốc độ trung bình của chất điểm trong một chu kỳ: v=St=4AT=4A2πω=2πAω=2πvmax.

+Tốc độ trung bình của chất điểm trong nửa chu kỳ: v¯ =St=2AT2=4AT=2πvmax.


Xem thêm

v¯=Smaxt

Chú thích:

v¯ : Tốc độ trung bình của chất điểm (cm/s, m/s)

Smax: Quãng đường lớn nhất chất điểm đi được trong khoảng thời gian t (cm, m)

t: Thời gian chuyển động của chất điểm (s)

 

Lưu ý:

Smax=2AsinπtT với t<T2


Xem thêm

v¯=Smint

Chú thích:

v¯ : Tốc độ trung bình của chất điểm (cm/s, m/s)

Smin: Quãng đường nhỏ nhất chất điểm đi được trong khoảng thời gian t (cm, m)

t: Thời gian chuyển động của chất điểm (s)

 

Lưu ý:

Smin=2A1-cosπ.tT với t<T2


Xem thêm

S=4nA+2.mA+s2 ; s2<2At=nT+mT2+t

S=4nA+2.mA+s2 ; s2<2At=nT+mT2+t

Tính góc quay  của s2


Xem thêm

t=-φ-π±arccosaAω2T2π+kT ;kZ 

Những thời điểm vật có gia tốc , lực phục hồi  thỏa điều kiện

t=-φ-π±arccosaAω2T2π+kT ;kZ 

t=-φ-π±arccosFFmaxT2π+kT ;kZ 


Xem thêm

 

t =-φ+π2±arccosvAωT2π+k1T    ;k1Z 

v=Aωcosωt+φ+π2

Thời điểm vật có vận tốc v:

t =-φ+π2±arccosvAωT2π+k1T    ;k1Z 


Xem thêm

t=-φ±arccosxAT2π+kT ;kZ 

x=Acosωt+φ

Thời điểm vật có li độ x 

t=-φ±arccosxAT2π+kT ;kZ  ;kZ 

 


Xem thêm

t

hinh-anh-cac-khoang-thoi-gian-lien-tiep-dac-biet-vat-ly-12-377-0

Ví dụ từ -A2 đến A22t=T12+T8=5T24


Xem thêm

t=Tnn0±t

  • Bước 1: Nhận xét xem trong 1 chu kỳ vật đi qua vị trí x là n0 lần.
  • Bước 2: Phân tích n=n0nn0±n
  • Bước 3: Tổng thời gian:t=Tnn0±t (Dựa vào vòng tròn để tính t)
  • t=α°360°.T=αrad2πT
  • α=α°360°.2π=ωt

Xem thêm

t=4ωarcsingiá tr điu kin  ugiá tr cc đi dùng cho vận tốc.

t=42ωarcsinWđ1W dùng cho động năng 

Thời gian để vật dao động điều hòa có độ lớn vận tốc, động năng  vượt quá u trong 1 chu kì

v=vmaxsinωt+φWđ=Wsin2ωt+φ

Công thức 

t=4ωarcsingiá tr điu kin  ugiá tr cc đi dùng cho vận tốc.

t=42ωarcsinWđ1W dùng cho động năng 

Khi đó vật đi từ vị trí u đến vị trí VTCB.Các khoảng thời gian này vật đối xứng qua VTCB . Khi xét thêm chiều ta lấy khoảng thời gian đó chia cho 2


Xem thêm

t=4ωarccosgiá tr điu kin  ugiá tr cc đi dùng cho vận tốc.

t=42ωarccosWđ1W dùng cho động năng 

Thời gian để vật dao động điều hòa có độ lớn vận tốc, động năng  không vượt quá u trong 1 chu kì

v=vmaxsinωt+φWđ=Wsin2ωt+φ

Công thức 

t=4ωarccosgiá tr điu kin  ugiá tr cc đi dùng cho vận tốc.

t=42ωarccosWđ1W dùng cho động năng 

Khi đó vật đi từ vị trí u đến vị trí biên.Các khoảng thời gian này vật đối xứng qua Biên . Khi xét thêm chiều ta lấy khoảng thời gain đó chia cho 2


Xem thêm

t=4ωarccosgiá tr điu kin  ugiá tr cc đi dùng cho li độ , lực phục hồi . gia tốc.

t=42ωarccosWt1W dùng cho thế năng 

Thời gian để vật dao động điều hòa có độ lớn li độ,lực phục hồi, thế năng  vượt quá u trong 1 chu kì

x=Acosωt+φa=a0cosωt+φ+πF=F0cosωt+φ+πWt=Wcos2ωt+φ

Công thức 

t=4ωarccosgiá tr điu kin  ugiá tr cc đi dùng cho li độ , lực phục hồi . gia tốc.

t=42ωarccosWt1W dùng cho thế năng 

Khoảng thời gian này được tính khi vật đi từ vị trí có điều kiện bằng u ra biên.Các khoảng thời gian này đổi xứng nhau qua biên.Khi xét thêm chiều ta lấy khoảng thời gian chia cho 2.


Xem thêm

t=4ωarcsinuA dùng cho li độ , lực phục hồi

t=42ωarcsinuW dùng cho thế năng 

Thời gian để vật dao động điều hòa có độ lớn li độ,lực phục hồi, thế năng  không vượt quá u trong 1 chu kì

x=Acosωt+φa=amaxcosωt+φ+πF=Fmaxcosωt+φ+πWt=Wcos2ωt+φ

Công thức 

t=4ωarcsingiá tr điu kin  ugiá tr cc đi dùng cho li độ , lực phục hồi . gia tốc.

t=42ωarcsinWt1W dùng cho thế năng 

Khoảng thời gian này được tính khi vật đi từ vị trí có điều kiện bằng u về VTCB.Các khoảng thời gian này đổi xứng nhau qua VTCB.Khi xét thêm chiều ta lấy khoảng thời gian chia cho 2.

 


Xem thêm

t=nT+t ;t<T

N=2n+q

Trong 1 chu kì

Số lần vật đi theo chiều âm hoặc chiều dương: 1

Số lần vật đổi chiều trong 1 chu kì  : 2

Số lần vật có cùng giá trị x,v,F,Wđ,Wt hoc vmax,amax: 2

Số lần vật có cùng độ lớn x,v,F,Wđ,Wt: 4

Số lần vật đi theo chiều âm hoặc chiều dương: 1

Công thức xác định số lần thỏa điều kiện giá trị trong khoảng thời gian :

Không xét chiều

Xétt=nT+mT2+t ;t<T2

Tính t =ωα ,với góc quét là từ vị trí trí đang xét đến vị trí tiếp

số lần N=2n+q

Khi ta lấy thêm chiều : N=n+q

 


Xem thêm

t=nT+mT2+t ;t<T2

N=4n+2m+q

Trong 1 chu kì

Số lần vật đi theo chiều âm hoặc chiều dương: 1

Số lần vật đổi chiều trong 1 chu kì  : 2

Số lần vật có cùng giá trị x,v,F,Wđ,Wt hoc vmax,amax: 2

Số lần vật có cùng độ lớn x,v,F,Wđ,Wt: 4

Số lần vật đi theo chiều âm hoặc chiều dương: 1

Công thức xác định số lần thỏa điều kiện trong khoảng thời gian :

Khi không lấy chiều

Xétt=nT+mT2+t ;t<T2

Tính t =ωα ,với góc quét là từ vị trí trí đang xét đến vị trí tiếp

số lần N=2n+m+q

khi lấy chiều N=2n+m+q

 


Xem thêm

Advertisement

Các câu hỏi liên quan

có 175 câu hỏi trắc nghiệm và tự luận vật lý


Tốc độ vật dao động điều hòa tại thời điểm x=A/2

Một vật dao động điều hoà xung quanh vị trí cân bằng với biên độ dao động là A và chu kì T. Tại điểm có li độ x = A/2 tốc độ của vật là

Trắc nghiệm Trung bình

Chu kì và biên độ của dao động điều hòa.

Một chất điểm M chuyển động đều trên một đường tròn với tốc độ dài 160cm/s và tốc độ góc 4 rad/s. Hình chiếu P của chất điểm M trên một đường thẳng cố định nằm trong mặt phẳng hình tròn dao động điều hòa với biên độ và chu kì lần lượt là

Trắc nghiệm Trung bình

Trong thời gian 1 phút vật thực hiện được 30 dao động

Một vật dao động điều hoà, trong thời gian 1 phút vật thực hiện được 30 dao động. Chu kì dao động của vật là?

Trắc nghiệm Trung bình
Advertisement

Vận tốc của vật dao động điều hòa là.

Một vật dao động điều hoà có phương trình dao động là x=5cos(2πt+π3)(cm). Vận tốc của vật khi có li độ x = 3cm là

Trắc nghiệm Khó

Gia tốc của vật khi có li độ x = 3cm là bao nhiêu?

Một vật dao động điều hoà có phương trình dao động là x=5cos(2πt+π2)(cm). Lấy π2=10. Gia tốc của vật khi có li độ x = 3cm là bao nhiêu?

Trắc nghiệm Khó

vận tốc và gia tốc của vật dao động điều hòa

Một vật dao động điều hòa trên đoạn thẳng dài 10cm và thực hiện được 50 dao động trong thời gian 78,5 giây. Tìm vận tốc và gia tốc của vật khi đi qua vị trí có li độ x = -3cm theo chiều hướng về vị trí cân bằng.

Trắc nghiệm Khó
Xem tất cả câu hỏi liên quan Làm bài tập
Advertisement

Các Bài Viết Được Xem Nhiều Nhất

Công thức vật lý 12 chương 1: dao động cơ, bài 2: con lắc lò xo

Tổng Hợp Công Thức Vật Lý

229128

Tổng hợp các công thức vật lý 12 chương 1: dao động cơ, bài 2: con lắc lò xo, hướng dẫn chi tiết từng công thức, các biến, hằng số, bài tập liên quan

Công thức vật lý 12 chương 1: dao động cơ, bài 1: tổng quan về dao động điều hòa

Tổng Hợp Công Thức Vật Lý

129116

Tổng hợp các công thức vật lý 12 chương 1: dao động cơ, bài 1: tổng quan về dao động điều hòa, hướng dẫn chi tiết từng công thức, các biến, hằng số, bài tập liên quan

Công thức vật lý 12 chương 7: hạt nhân nguyên tử, bài 3: phóng xạ

Tổng Hợp Công Thức Vật Lý

2029087

Tổng hợp các công thức vật lý 12 chương 7: hạt nhân nguyên tử, bài 3: phóng xạ, hướng dẫn chi tiết từng công thức, các biến, hằng số, bài tập liên quan

Công thức vật lý 11 chương 7: mắt, các dụng cụ quang, bài 28: lăng kính

Tổng Hợp Công Thức Vật Lý

10029081

Tổng hợp các công thức vật lý 11 chương 7: mắt, các dụng cụ quang, bài 28: lăng kính, hướng dẫn chi tiết từng công thức, các biến, hằng số, bài tập liên quan

Advertisement

Công thức vật lý 12 chương 7: hạt nhân nguyên tử, bài 2: năng lượng liên kết của hạt nhân, phản ứng hạt nhân

Tổng Hợp Công Thức Vật Lý

1929067

Tổng hợp các công thức vật lý 12 chương 7: hạt nhân nguyên tử, bài 2: năng lượng liên kết của hạt nhân, phản ứng hạt nhân, hướng dẫn chi tiết từng công thức, các biến, hằng số, bài tập liên quan

Advertisement
Advertisement

Doanh thu từ quảng cáo giúp chúng mình duy trì nội dung chất lượng cho website

  Cách tắt chặn quảng cáo  

Tôi không muốn hỗ trợ (Đóng) - :(

Bạn hãy tắt trình chặn quảng cáo
Loading…